Federation of American Societies for Experimental Biology
A study published online in The FASEB Journal, involving mice, suggests that EGCG (epigallocatechin-3-gallate), the most abundant catechin and biologically active component in green tea, could alleviate high-fat and high-fructose (HFFD)-induced insulin resistance and cognitive impairment. Previous research pointed to the potential of EGCG to treat a variety of human diseases, yet until now, EGCG's impact on insulin resistance and cognitive deficits triggered in the brain by a Western diet remained unclear.
Journal Reference:
Yashi Mi, Guoyuan Qi, Rong Fan, Qinglian Qiao, Yali Sun, Yuqi Gao, Xuebo Liu. EGCG ameliorates high-fat– and high-fructose–induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF. The FASEB Journal, 2017; fj.201700400RR DOI: 10.1096/fj.201700400RR
A study published online in The FASEB Journal, involving mice, suggests that EGCG (epigallocatechin-3-gallate), the most abundant catechin and biologically active component in green tea, could alleviate high-fat and high-fructose (HFFD)-induced insulin resistance and cognitive impairment. Previous research pointed to the potential of EGCG to treat a variety of human diseases, yet until now, EGCG's impact on insulin resistance and cognitive deficits triggered in the brain by a Western diet remained unclear.
Journal Reference:
Yashi Mi, Guoyuan Qi, Rong Fan, Qinglian Qiao, Yali Sun, Yuqi Gao, Xuebo Liu. EGCG ameliorates high-fat– and high-fructose–induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF. The FASEB Journal, 2017; fj.201700400RR DOI: 10.1096/fj.201700400RR
Comments
Post a Comment